Peter A. Revell1845692454, 9781845692452, 142007962X, 9781420079623
Table of contents :
Cocer Page
……Page 1
Title Page
……Page 2
Joint replacement technology……Page 4
Contents……Page 6
Contributor contact details……Page 15
Preface……Page 20
Part I: Introduction……Page 23
1.2.1 Defining the biomechanical properties of a joint: degrees of freedom and constraints……Page 24
Vectors and equilibrium……Page 25
Rotations and moments……Page 26
1.2.3 Equilibrium of a joint: role of joint structures, muscles and ligaments……Page 27
Elbow flexion……Page 29
1.2.5 Materials science and engineering: stress, strain, failure and fatigue……Page 30
1.2.6 Stresses due to bending and torsion……Page 32
Biological and non-metallic materials……Page 34
Basic anatomy and kinematics……Page 35
Muscles and forces……Page 37
Basic anatomy and kinematics……Page 38
1.3.4 Patellofemoral joint……Page 39
Anatomy and kinematics……Page 40
1.4 The upper limb……Page 41
Anatomy and kinematics……Page 42
Muscles and forces……Page 44
Muscles and forces……Page 45
Muscles and forces……Page 47
1.4.4 Intervertebral joints……Page 48
1.7 References……Page 50
2.1.2 Surfaces and roughness……Page 52
2.1.3 Contact mechanics……Page 53
2.1.4 Friction……Page 54
2.1.5 Wear……Page 55
2.1.6 Lubrication……Page 57
2.2.1 Contact mechanics……Page 59
2.2.2 Lubrication……Page 61
2.2.3 Wear……Page 63
2.3.1 Surface topography of bearing surfaces used for artificial joints……Page 64
2.3.2 Friction and lubrication……Page 65
Ultra-high molecular weight polyethylene: crosslinking……Page 66
Metal-on-metal: lubrication dependent……Page 67
2.4 Issues of tribology for joint replacements and future trends……Page 70
2.6 References and further reading……Page 71
3.1.2 Relation between corrosion, biocompatibility, and engineering failure of implants……Page 77
3.2.2 Dissolved gases……Page 78
3.2.3 Organic compounds……Page 79
3.2.5 Possible influences of active physiological processes……Page 80
Inflammation……Page 81
3.3.2 Surface finish and exposed area……Page 82
3.3.5 Crevice geometry……Page 83
3.4 Corrosion……Page 85
3.4.1 Basic aspects of electrochemistry……Page 86
3.4.3 Means for assessing corrosion of surgical implants……Page 87
Experimental techniques……Page 88
Retrieval analysis……Page 90
Animal models……Page 91
Pitting……Page 92
Intergranular corrosion……Page 94
Influence of applied stress……Page 95
3.5.1 Summary……Page 97
3.5.2 Future trends……Page 98
3.6 Sources of further information and advice……Page 99
3.7 References……Page 100
4.2 Materials criteria for total joint replacement……Page 102
4.3 History of materials used in joint replacement……Page 104
4.4.1 Metals……Page 105
4.4.2 Ceramics……Page 106
4.4.3 Polymeric materials……Page 109
4.5 Bone cement materials……Page 111
4.6 Composite materials and new nanocomposite systems……Page 112
4.7 Natural materials……Page 114
4.10 References……Page 115
5.2.1 Medical device……Page 126
5.2.3 Medical Device Regulations……Page 127
5.2.4 Reclassification Directive (2005/50/EC)……Page 128
5.3.1 Compliance with the regulatory requirements……Page 129
5.3.3 The Notified Body……Page 130
5.3.5 Harmonised standards for joint replacement devices……Page 131
5.5 References and useful websites for further information……Page 132
Part II: Material and mechanical issues……Page 133
6.1.2 Classification……Page 134
6.2 General requirements for biomaterials……Page 135
6.3.1 Biomaterial standards……Page 137
6.3.2 Corrosion standards……Page 140
6.4 Overview of metals……Page 141
6.5 Biomechanical properties……Page 144
6.7 Corrosion testing……Page 149
6.8.1 Surgical stainless steel……Page 153
6.8.2 Titanium and its alloys……Page 155
6.8.3 Cobalt-based alloys……Page 158
6.8.4 Tantalum……Page 159
6.9 Particle disease……Page 160
6.10.1 Statistical problems with outcome studies……Page 161
6.10.3 Cobalt chrome alloy……Page 162
6.10.6 Cemented fixation……Page 163
6.10.7 Metals used for articulating surfaces……Page 165
6.11.1 Resurfacing implants and mini-invasive surgery……Page 166
6.11.2 Isoelasticity……Page 172
6.14 References……Page 174
7.1 Introduction……Page 182
7.2.1 Alumina……Page 183
7.3 Ceramics in total hip replacement……Page 184
7.3.1 Ceramic-on-ceramic and ceramic-on-polyethylene bearings……Page 185
7.3.2 Large ceramic heads in total hip replacement……Page 186
7.4 Ceramics in total knee replacement……Page 189
7.5 Summary……Page 191
7.6 References……Page 192
8.2 Articulating surfaces in natural joints……Page 195
8.3 Demands for the bearing surfaces……Page 196
8.4.1 Polymers on bearing surfaces……Page 197
8.4.2 Metal metal bearing surfaces……Page 199
8.4.3 Ceramic ceramic bearing surfaces……Page 201
8.4.4 Coatings for bearing surfaces……Page 202
8.5 Special concepts and designs for bearing surfaces……Page 204
8.6 Comparison of bearing surface solutions……Page 205
8.7 Future trends……Page 206
8.8 References……Page 207
9.1 Introduction……Page 209
9.2 Cementless fixation……Page 210
9.3 Initial stability……Page 211
9.4 Osseous integration of cementless implants……Page 212
9.4.2 Surface geometry characteristics……Page 213
9.4.3 Biological compatibility of materials……Page 214
9.4.4 Bioactive surface coatings……Page 215
9.5 Mechanical properties of the implant……Page 216
9.6.1 Uncemented implants and revision surgery……Page 218
9.6.2 Osteoporosis do you really need cement?……Page 219
9.6.5 Blood loss……Page 221
9.7 Future trends……Page 222
9.8 References……Page 224
10.2 Acrylic bone cements – history and evolution……Page 231
10.3 Clinical application and function……Page 232
10.4 Composition……Page 233
10.5 Polymer powder/liquid monomer ratio……Page 234
10.6 Polymerisation reaction……Page 235
10.7 Polymerisation heat……Page 238
10.8 Polymerisation shrinkage……Page 239
10.10 Residual monomer and monomer release……Page 240
10.11 Viscosity and handling properties……Page 241
10.12 Antibiotics in poly(methylmethacrylate) bone cement……Page 244
10.13 Radiopacifier in poly(methylmethacrylate) bone cement……Page 245
10.14 Mechanical properties……Page 246
10.15 Mixing methods……Page 249
10.16.1 Cemented hip replacement……Page 252
Acetabular cementing……Page 253
Femoral cementing……Page 254
10.16.2 Cemented knee replacement……Page 257
10.17.1 Infection……Page 259
10.17.3 Wear particles……Page 260
10.19 References……Page 261
11.2 Structure and properties of glass ionomer cements……Page 271
11.3.1 Ion release and bioactivity……Page 272
11.3.2 In vitro evaluation……Page 274
11.3.3 In vivo evaluation……Page 275
11.3.4 Clinical evaluation……Page 276
11.5 References……Page 278
12.2 Wear and debris……Page 283
12.3 Implant or bone fracture……Page 286
12.3.1 The hip……Page 287
12.3.2 The knee……Page 288
12.3.4 Treatment options……Page 290
12.3.5 Implant fracture……Page 294
12.4 Dislocation……Page 295
12.5 Stress shielding……Page 299
12.7 Summary……Page 300
12.8 Future trends……Page 301
12.9 References……Page 302
13.1 Introduction……Page 305
13.2 National joint replacement registries……Page 306
13.2.2 What have the Swedish hip and knee registries shown?……Page 307
13.3 Radiostereometric analysis……Page 318
13.3.1 Fixation of implants……Page 321
13.3.2 Wear……Page 322
13.5 References……Page 325
Part III: The device biological environment……Page 331
14.1 Introduction……Page 332
14.2 Immediate response to prosthesis placement……Page 333
14.3 Remodelling of bone around implants……Page 335
14.4 The cemented joint prosthesis……Page 340
14.5.1 Porous metal surfaces……Page 346
14.5.3 Polymer pegs and screws……Page 349
14.6 Bioactive surfaces on prostheses……Page 350
14.7 Adjunctive methods or treatments and their effects……Page 355
14.7.1 Bone grafts in joint replacement……Page 356
14.7.3 Enhancement of bone formation……Page 358
14.8 Summary……Page 360
14.9 References……Page 361
15.1 Introduction……Page 366
15.2 Infection……Page 367
15.2.2 Imaging methods……Page 368
15.2.3 Joint fluid examination……Page 369
15.2.4 Laboratory examination of tissue samples: histopathology……Page 370
15.2.5 Laboratory examination of tissue samples: microbiology……Page 371
15.3 Aseptic loosening……Page 373
15.4.1 Conventional light microscopy……Page 374
15.4.2 Ultrastructural studies: submicroscopic and nanometre-sized particles……Page 377
15.5.1 The synovial lining cells of joints and at the implant bone interface……Page 380
15.5.2 The dissemination of particles to peri-implant tissues……Page 383
15.6 The role of macrophages and multinucleate giant cells……Page 385
15.7 Bone resorption and wear debris: osteoclasts, macrophages and multinucleate giant cells……Page 388
15.8 Lymphocytes, sensitisation and aseptic loosening……Page 389
15.9 Evidence for immunological processes in loosening……Page 391
15.9.1 T-cell subtypes……Page 392
15.9.2 T-cell proliferation and maintenance……Page 393
15.9.3 T-cell memory and activation: antigen presentation……Page 395
15.9.4 Lymphocyte migration into the interface tissue……Page 398
15.10 Wear particles and corrosion products in distant organs: systemic effects……Page 399
15.11 Summary and conclusions……Page 401
15.12 References……Page 402
16.1 Why do we need to improve the outcome of orthopaedic implants?……Page 414
16.2 What is the clinical situation for orthopaedic implants used as drug delivery systems?……Page 415
16.3 Is the research for orthopaedic drug delivery systems advanced enough to translate it to clinical applications?……Page 416
16.4 Will drug delivery systems be the future for orthopaedic implants?……Page 419
16.5 References……Page 420
17.1.2 Testing and regulation……Page 424
Validation……Page 426
17.1.4 Packaging……Page 427
17.2.1 Moist heat (autoclave)……Page 428
17.2.2 Irradiation……Page 429
17.2.3 Ethylene oxide……Page 430
17.2.4 Non-traditional methods……Page 433
17.3 Issues with sterilization of joint replacement materials……Page 434
17.3.1 Metals……Page 435
17.3.2 Polymers……Page 437
17.3.3 Biological materials……Page 440
17.5 References……Page 441
Part IV: Specific joints……Page 445
18.1.1 Historical background to tribological features of hip arthroplasty……Page 446
18.1.2 The mid-20th century development of the McKee Farrar (metal-on-metal) and Charnley (metal-on-polymer) total hip replacements……Page 447
18.1.3 Introduction by Boutin of ceramic-on-ceramic total hip replacements……Page 450
18.2 Millennium prostheses……Page 452
18.3 Introduction to the tribology of total hip replacements……Page 454
18.3.1 Lubrication of metal-on-metal total hip replacements……Page 456
18.3.2 Predicting film thickness in metal-on-metal hip replacements……Page 460
18.3.3 Relationship between elastohydrodynamic film thickness (or lambda ratio) and the cumulative wear in metal-on-metal hip joints……Page 462
18.4 Hard-on-hard total hip joint tribology……Page 464
18.4.1 Friction and wear of metal-on-metal total hip replacements……Page 465
18.4.2 Friction and wear characteristics of ceramic-on-ceramic and ceramic-on-metal total hip replacements……Page 467
18.5 Wear particles and metal ions……Page 468
18.6 Summary……Page 471
18.7 References……Page 473
19.1 Introduction……Page 477
19.2.1 Patient factors……Page 480
19.3.1 Dislocation……Page 481
19.3.2 Leg length discrepancy……Page 482
19.3.4 Infection……Page 483
19.3.7 Wear……Page 484
19.3.8 Fracture……Page 485
19.4.2 Implant biology……Page 486
19.5 Computer navigation……Page 487
Leg length restoration……Page 488
Component orientation……Page 489
19.7 References……Page 491
20.1 Introduction……Page 496
20.2.1 Kinematics……Page 497
20.2.2 Total knee joint prosthesis design……Page 501
Tricompartmental total knee arthroplasty……Page 503
Unicompartmental total knee arthroplasty……Page 508
Designs based on new’ kinematics……Page 512
Patellofemoral joint arthroplasty……Page 514
Is there a clinical difference?……Page 515
20.3.1 Paradoxical motion……Page 517
20.3.2 Range of motion……Page 518
20.3.4 Alignment……Page 519
20.3.6 Minimally invasive surgery……Page 522
20.3.7 Pain control and limited postoperative range of motion……Page 523
20.4 Summary……Page 524
20.5 References……Page 525
21.1 Introduction……Page 530
Motion (kinematic) preservation……Page 531
Biomechanical loading preservation……Page 532
Failsafe……Page 533
21.2.1 Stainless steel alloys: formability and ductility……Page 534
21.2.4 Ultra-high molecular weight polyethylene (UHMWPE)……Page 537
21.2.6 Surface coatings……Page 538
21.3 Early intervertebral disk replacement designs……Page 539
21.4 Current designs……Page 540
21.4.2 Metal-on-metal articulation……Page 547
21.4.3 Polymer-on-polymer articulation……Page 548
Total disc arthroplasty: Bryan Cervical Disc Prosthesis (Medtronic)……Page 549
PDN Prosthetic Disc Nucleus (Raymedica Inc.)……Page 550
21.5 Clinical concerns……Page 551
Mechanisms of wear debris generation……Page 552
Wear and metal-on-polymer IDR……Page 553
21.5.2 Corrosion……Page 555
21.5.4 Metal hypersensitivity……Page 556
21.5.6 Infection……Page 558
21.7 References……Page 559
22.1 Introduction……Page 564
22.2 Temporomandibular joint prosthesis criteria……Page 568
22.3 Design……Page 569
22.4 Development and test procedures……Page 574
22.5 First clinical application……Page 577
22.8 References……Page 580
23.1 Introduction: short history of ankle replacement……Page 584
23.2 Anatomical, biomechanical and biological features of the normal ankle joint……Page 586
23.4 Contraindications for ankle replacement……Page 588
23.5 Materials used to replace the ankle……Page 589
23.7 The interrelationship between the ankle and the hindfoot……Page 590
23.9 Future trends……Page 591
23.10 References……Page 592
24.1 Introduction……Page 594
24.2 Biomechanics of total shoulder arthroplasty……Page 595
24.3.2 Cuff tear arthropathy……Page 603
24.3.4 Osteonecrosis……Page 605
24.3.5 Acute proximal humeral fractures……Page 607
24.4.1 Humeral side……Page 610
24.4.2 Glenoid side……Page 612
24.4.3 Reverse total shoulder arthroplasty……Page 613
24.5 Complications……Page 616
24.6 Prognostic factors for clinical outcome……Page 617
24.8 References……Page 619
Linked/coupled implants……Page 626
25.2.2 Advantages and disadvantages of the different kinds of implants……Page 628
25.3 Indications and contraindications……Page 630
25.4.1 Surgical exposure……Page 631
25.4.2 Bony preparation and component insertion……Page 632
25.4.3 Postoperative management……Page 633
25.5.1 Chronic inflammatory arthritis……Page 634
Post-traumatic osteoarthritis……Page 635
Distal humerus fractures……Page 636
25.6.1 Infection……Page 638
25.6.6 Periprosthetic fractures……Page 639
25.7 Revision surgery……Page 640
25.9 References……Page 643
26.2 What is pyrolytic carbon?……Page 646
26.2.2 Structure/properties……Page 647
26.2.4 Beneficial properties for orthopaedic implants……Page 649
26.3.1 Heart valves……Page 652
26.4.1 The pyrolytic carbon metacarpophalangeal early experience……Page 653
26.4.3 The pyrolytic carbon proximal interphalangeal joint……Page 655
26.5 Design and testing of pyrolytic carbon joint replacement implants……Page 657
26.6 Hemi-joint arthroplasty……Page 659
26.6.1 Compatibility of pyrolytic carbon with cartilage……Page 660
26.6.2 Compatibility of pyrolytic carbon with bone……Page 663
26.8 Forward-looking statement with respect to pyrolytic carbon in orthopaedics……Page 668
26.9 References……Page 669
Reviews
There are no reviews yet.