Ionizing radiation detectors for medical imaging

Free Download

Authors:

ISBN: 9812386742, 9789812386748, 9789812562623

Size: 23 MB (24470418 bytes)

Pages: 524/524

File format:

Language:

Publishing Year:

Category:

Alberto Del Guerra9812386742, 9789812386748, 9789812562623

Ionizing Radiation Detectors for Medical Imaging contains ten technical chapters, half of which are devoted to radiology and the other half to nuclear medicine. The last chapter describes the detectors for radiotherapy and portal imaging. Each chapter addresses completely a specific application. The emphasis is always on detector fundamentals and detector properties. Where necessary, software and specific applications are described in depth.
This book is intended for graduate and undergraduate students in physics and engineering who want to study medical imaging. In addition, scientists who are working in a specific sub-field of medical imaging can acquire from the book an up-to-date description of the state of the art in related sub-fields, within the scope of ionizing radiation detectors. Other scientists, as well as physicians, can use the book as a reference for medical imaging.

Table of contents :
Ionizing Radiation Detectors for Medical Imaging……Page 5
CONTENTS……Page 7
Foreword……Page 17
List of Contributors……Page 19
Acknowledgments……Page 24
1.1 Medical Imaging……Page 25
1.2 Ionizing Radiation Detectors Development: High Energy Physics versus Medical Physics……Page 27
1.3 Ionizing Radiation Detectors for Medical Imaging……Page 30
1.4 Conclusions……Page 31
2.2. Physical Properties of X-Ray Screens……Page 33
2.2.1. Screen Efficiency……Page 36
2.2.2. Swank Noise……Page 39
2.3. Physical Properties of Radiographic Films……Page 41
2.3.1. Film Characteristic Curve……Page 42
2.3.2. Film Contrast……Page 43
2.3.4. Film Speed……Page 45
2.3.5. Reciprocity- Law Failure……Page 46
2.4. Radiographic Noise……Page 47
2.5. Definition of Image-Quality……Page 48
2.5.1. MTF……Page 50
2.5.2. NPS……Page 51
2.5.3. DQE……Page 54
2.6.1. The Concept of Sampling Aperture……Page 56
2.6.2. Noise Contrast……Page 57
2.6.3. Contrast-Detail Analysis……Page 58
2.7. Image-Quality of Screen-Film Combinations……Page 60
2.7.1. MTF, NPS and DQE Measurement……Page 61
2.7.2. Quality Indices……Page 63
References……Page 64
3.1 Introduction……Page 69
3.2.1 Figure of Merit for Image Quality: Detective Quantum Efficiency……Page 74
3.2.2 Integrating vs Photon Counting Systems……Page 77
3.3 Semiconductor materials for X-Ray Digital Detectors……Page 80
3.4 X-Ray Imaging Technologies……Page 85
3.4.1 Photo-Stimulable Storage Phosphor Imaging Plate……Page 86
3.4.2 Scintillators/Phosphor + Semiconductor Material (e.g. a-Si:H) + TFT Flat Panels……Page 94
3.4.3 Semiconductor Material (eg. a-Se) + Readout Matrix Array of Thin Film Transistors (TFT)……Page 106
3.4.4 Scintillation Material (e.g. Csl) + CCD……Page 109
3.4.5 2D microstrip Array on Semiconductor Crystal + Integrated Front-End and Readout……Page 112
3.4.6 Matrix Array of Pixels on Crystals + VLSI Integrated Front-End and Readout……Page 116
3.4.7 X-Ray-to-Light Converter Plates (AlGaAs)……Page 128
3.5 Conclusions……Page 131
References……Page 133
4.1 Introduction……Page 141
4.2 Basic Principle of CT Measurement and Standard Scanner Configuration……Page 142
4.3 Mechanical Design……Page 144
4.4 X-Ray Components……Page 147
4.5 Collimators and Filtration……Page 149
4.6 Detector Systems……Page 153
4.7 Concepts for Multi-Row Detectors……Page 159
4.8 Outlook……Page 161
References……Page 163
5.1 Introduction……Page 165
5.2.1. Mammography……Page 166
5.2.2 Digital Mammography with Synchrotron Radiation……Page 171
5.2.3. Subtraction Techniques at the k-Edge of Contrast Agents……Page 174
5.2.3.1. Detectors and Detector Requirements for Dichromography……Page 182
5.2.4. Phase Effects……Page 185
5.2.4.1. Detectors for Phase Imaging……Page 191
5.3 Conclusion and Outlook……Page 194
A. Image formation and Detector Characterization……Page 195
B. Digital Subtraction Technique……Page 203
References……Page 205
6.1 Autoradiographic Methods……Page 209
6.1.1 Traditional Autoradiography: Methods……Page 211
6.1.2 Traditional Autoradiography: Limits……Page 213
6.2.1 Principles……Page 214
6.2.2 Commercial Systems and Performance……Page 215
6.3.2 Research Fields……Page 219
6.3.3 Commercial Systems……Page 222
6.4.1 Principles……Page 225
6.4.2.2 Research Fields……Page 226
6.4.2.3 Commercial Systems……Page 228
6.4.3.1 Pixel Architecture……Page 230
6.4.3.2 Research Systems……Page 231
6.5.1 Principles……Page 235
6.5.2 Research and Commercial Systems……Page 236
6.6.1 Principles……Page 237
6.6.2 System Description and Performance……Page 238
6.7.1 Principles……Page 240
6.8.1 Principles……Page 241
6.8.2 System Description and Performance……Page 242
References……Page 247
7.1 Introduction……Page 251
7.2 Collimators……Page 253
7.2.1 Multi-Hole Theory……Page 256
7.2.3 Penetration Effects……Page 264
7.3 Detectors……Page 268
7.3.1 Scintillators……Page 269
7.3.1.1 YalO3:Ce……Page 270
7.3.1.3 Lu2SiO5:Ce……Page 272
7.3.2 Semiconductors……Page 274
7.3.2.1 Materials……Page 278
7.3.2.2 Nuclear Medicine Applications……Page 279
7.4 Reconstruction Algorithms……Page 280
7.4.2 Ill-Posed Problems……Page 281
7.4.3 Ill-Conditioning and Regularization……Page 282
7.4.4 The Radon Transform……Page 284
7.4.5 Analytical Methods: Filtered Back-Projection……Page 285
7.4.6. Iterative Algorithms……Page 288
7.5 Clinical Imaging……Page 294
7.5.2 Planar Imaging from Semiconductor Detectors……Page 295
7.5.3 Attenuation Corrected Imaging……Page 296
References……Page 299
8.1 Introduction to Emission Imaging……Page 303
8.1.1 Tomography Procedures and Terminologies……Page 305
8.2.1 Positron Emission and Radionuclides……Page 308
8.2.2 Annihilation of Positron……Page 312
8.2.3 Interaction of Gamma Rays in Biological Tissue……Page 318
8.3 Detection of Annihilation Photon……Page 319
8.3.1 Photon Detection with Inorganic Scintillator Crystals……Page 320
8.3.2 Inorganic Scintillator Readout……Page 327
8.3.3 Parallax Error, Radial Distortion and Depth of Interaction……Page 332
8.4 Image Reconstruction……Page 334
8.4.1 The Filtered Backprojection……Page 336
8.4.2 The Expectation Maximisation Algorithm……Page 346
8.4.3 The OSEM Algorithm……Page 352
8.5.1 Attenuation……Page 353
8.5.2 Scattering……Page 357
8.5.3 Random Coincidences……Page 364
8.5.4 Partial Volume Effect……Page 366
8.5.5 Normalization……Page 367
8.6 Commercial Camera Overview……Page 369
References……Page 371
9.1 Introduction……Page 375
9.2.1 Hamamatsu First PSPMT Generation……Page 377
9.2.2 Hamamatsu Second PSPMT Generation……Page 379
9.2.3 Hamamatsu 3rd Generation PSPMT……Page 380
9.3 Signal Read Out Methods and Scintillation Crystals……Page 382
9.4 The Role of Compact Imagers in Clinical Application……Page 388
References……Page 396
10.1 Introduction……Page 401
10.2.1 Gamma-Ray Detection……Page 402
10.2.2 Scintillator Based Position Sensitive Detectors……Page 409
10.2.2.1 Continuous Scintillators……Page 410
10.2.2.2 Matrix Crystals……Page 411
10.3 Single Photon Emission Computerized Tomography (SPECT)……Page 413
10.3.1.1 Intrinsic Spatial Resolution in SPECT……Page 415
10.3.1.2 Energy Resolution……Page 416
10.3.2.1 Pinhole Collimator……Page 418
10.3.2.2 Parallel Hole Collimator……Page 421
10.3.3.1 Pinhole Collimator Scanners……Page 422
10.3.3.2 Parallel Hole Collimator Scanners……Page 424
10.3.3.3 Converging Hole Collimator Scanner……Page 428
10.4.1 Physical Limitations to Spatial Resolution……Page 431
10.4.1.1 Electron Fermi Motion……Page 432
10.4.1.2 Scattering in the Source……Page 434
10.4.1.3 Positron Range……Page 435
10.4.2.1 Intrinsic Detector Efficiency……Page 438
10.4.2.2 Detector Scatter Fraction……Page 439
10.4.2.3.1 Detector intrinsic spatial resolution……Page 442
10.4.2.3.2 System intrinsic spatial resolution……Page 443
10.4.2.4 Random Coincidences and Pile Up Events……Page 444
10.4.2.5 Energy Resolution……Page 446
10.4.3.1 Planar Geometry……Page 447
10.4.3.2 Ring Geometry……Page 449
10.5.1.1 Hamamatsu SHR-2000 and SHR-7700 Scanners……Page 451
10.5.1.2 CTI-PET Systems ECAT-713……Page 452
10.5.2.1 Hammersmith RatPET……Page 453
10.5.2.2 MicroPET……Page 456
10.5.2.3 Sherbrooke PET and the Munich MADPET……Page 461
10.5.2.4 The NIH Atlas Scanner……Page 463
10.5.2.5 Scanner of the Brussels Group: The VUB-PET……Page 464
10.5.3.1 YAP-(S)PET and TierPET……Page 466
10.5.3.2 HIDAC……Page 472
10.6 Conclusions……Page 476
References……Page 477
11.1 Introduction……Page 481
11.2.1 External Beam Radiation Delivery……Page 482
11.2.2 Requirements for Standards and Reporting……Page 484
11.3.1 Photon Interaction Mechanisms……Page 485
11.3.2 Electron Interaction Mechanisms……Page 487
11.3.3 Units……Page 489
11.3.4 Charged Particle Equilibrium and Cavity Theory……Page 490
11.3.5 Effects of Measurement Depth……Page 491
11.3.6 Quality Assurance and Verification Measurements……Page 492
11.4.1 Ionisation Chambers……Page 494
11.4.2 Thermoluminiscent Detectors……Page 498
11.4.3 Diode Detectors……Page 500
11.4.4 Diamond Detectors……Page 503
11.5 Film……Page 505
11.6 Electronic Portal Imaging……Page 508
11.6.1 Camera-Based Systems……Page 510
11.6.2 Liquid Ionisation Chamber Based Systems……Page 511
11.6.3 Amorphous Silicon Flat-Panel Systems……Page 512
11.7.1 Fricke Dosimetry……Page 513
11.7.2 Polymer Gels……Page 514
References……Page 515
Analytical Index……Page 517

Reviews

There are no reviews yet.

Be the first to review “Ionizing radiation detectors for medical imaging”
Shopping Cart
Scroll to Top