Didier Massonnet,Jean-Claude Souyris9782940222155, 2940222150, 9780849382390, 0849382394
Table of contents :
IMAGING WITH SYNTHETIC APERTURE RADAR……Page 2
Acknowledgements……Page 4
Preface……Page 5
Table of Contents……Page 7
Table of Contents……Page 0
1.1.1 Maxwell’s Equations……Page 14
1.1.1.1 The constitutive equations……Page 15
1.1.1.2 Boundary conditions……Page 16
1.1.2.1 Structure of electromagnetic waves in the vacuum……Page 17
1.1.2.2 The polarization ellipse……Page 18
The linear polarizations……Page 20
Waves that propagate in opposite directions……Page 21
1.1.2.4 Polarization basis……Page 22
1.1.3.1 The coherence matrix……Page 24
1.1.3.2 The wave decomposition theorem……Page 26
1.1.3.3 The group of Pauli matrices and the Stokes parameters……Page 27
1.1.3.4 The Poincar sphere……Page 28
1.1.4 In passing: the elegant algebra of the SU(2)-O+(3) homomorphism……Page 30
1.1.4.1 On the Hermitian nature of the coherence matrix……Page 31
1.2.2 The electromagnetic radiation equation……Page 32
1.2.4 Antenna pattern, directivity and gain……Page 33
1.2.5 The radiation of planar antennas……Page 34
1.2.5.1 Antenna pattern of a rectangular planar antenna……Page 35
1.2.5.2 Defining the far-field zone……Page 36
1.2.6 Array antennas……Page 37
1.2.6.2 Offpointing the beam……Page 38
1.3.1 Introduction……Page 39
1.3.2.1 Surface description……Page 40
The Rayleigh criterion……Page 42
Asymptotic method……Page 43
The case of bare soils……Page 44
Sea surfaces……Page 46
1.3.3 Volume scattering……Page 48
1.3.4 Penetration properties of electromagnetic waves……Page 49
1.3.5 The effects of slope on radiometry……Page 52
1.4.3 Fourier transform……Page 53
1.4.4 Properties of the Fourier transform (FT)……Page 54
1.4.5.2 The Dirac delta function……Page 55
1.4.5.3 The Dirac comb……Page 56
1.4.5.4 Monochromatic functions cos(2 · pi · fo · t) and sin(2 · pi · fo · t)……Page 57
1.4.6 Sampling real signals……Page 58
1.4.7 Sampling theorem (Shannon’s theorem)……Page 59
1.4.7.1 A ‘naïve’ interpretation of Shannon’s theorem……Page 60
1.4.8 The Fast Fourier transform (FFT) algorithm……Page 61
1.4.9 The two-dimensional Fourier transform……Page 63
References……Page 64
2.1 Introduction……Page 66
2.2.1 A different way of observing the Earth……Page 67
2.2.2 Range vision……Page 68
2.2.3 The three fundamental radar frequencies……Page 69
2.2.4 An intuitive geometrical approach to synthetic aperture……Page 72
2.2.4.2 Velocity aberrations……Page 75
2.2.5 Synthetic aperture, an analytic geometry formulation……Page 77
2.2.5.1 Coherent addition of radar echoes……Page 79
2.2.5.2 Synthesis of mobile targets……Page 80
2.2.5.3 Effect of the radar’s trajectory on the processing……Page 81
2.3 Frequency representation……Page 82
2.3.1 Phase distribution expressed in the frequency domain……Page 83
2.3.2 Non-Zero Mean Doppler……Page 84
2.3.3 Doppler locking……Page 86
2.3.4 Mean Doppler (or Doppler centroid) estimation……Page 87
2.3.5 Mean reduced Doppler estimation (integer part)……Page 89
2.3.6 Range migration……Page 91
2.3.7 Range processing……Page 93
2.3.8 Saturation effects……Page 94
2.3.9 Interference effects……Page 95
2.3.10 Motionless radar approximation……Page 96
2.4.1 A common preliminary step, range compression……Page 97
2.4.2 Time or ‘naive’ processing……Page 98
2.4.3 Range-azimuth or ‘classic’ processing……Page 99
2.4.5 Subtle distortion, chirp scaling……Page 100
2.4.6 PRISME architecture, a multistage processing technique……Page 101
2.4.8 A practical example of the unfocussed processing technique……Page 103
2.4.9 Another special case, deramping processing……Page 104
2.4.10 A radar processing technique without approximations……Page 106
2.5.2 Timing constraints……Page 107
2.5.4 Tricks for cheating nature……Page 109
2.5.4.1 ‘Spotlight’ mode……Page 110
2.5.4.2 ‘Scansar’ mode……Page 112
2.5.4.3 Other ideas……Page 113
2.6.1 A practical example of the effect of range on images……Page 114
2.6.2 Equations for geometric positioning……Page 116
2.6.4 Radargrammetry and interferometry……Page 120
2.6.5 Oblique radargrammetry……Page 122
2.7 An introduction to super-resolution……Page 123
2.8 Radar processing and geometric specificity of bistatic data……Page 125
2.8.2 Triangular resolution……Page 127
References……Page 128
3.1 Introduction……Page 129
3.2 Radar equation, Radar Cross Section (RCS) of a point target……Page 130
3.2.1 Loss terms……Page 132
3.3 Radar signature for extended targets – the backscatter coefficient σ0……Page 134
3.5 Modifying the SNR during SAR synthesis……Page 135
3.5.1.1 The effect of pulse compression……Page 136
3.5.1.2 The effect of SAR synthesis……Page 138
3.5.1.3 SNR on point targets after range compression and SAR synthesis……Page 141
3.5.2 Extended targets……Page 142
3.7 Impact of image ambiguities on the………Page 145
3.7.1 Range ambiguities……Page 146
3.7.2 Azimuth ambiguities……Page 148
3.7.4 Total………Page 149
3.8 Volume of data generated onboard……Page 151
3.9 Telemetry data rate……Page 152
3.9.1 Source coding……Page 153
3.9.1.2 The Block Floating Point Quantization (BFPQ) algorithm……Page 154
3.10 Calibration and corresponding image quality requirements……Page 155
3.10.2 External calibration……Page 156
3.10.3 Calibration requirements and expected scientific results……Page 157
3.11.1 Physical origin……Page 158
3.11.2 Statistics of fully developed speckle……Page 160
3.11.3 Speckle noise: multiplicative nature and modeling……Page 161
3.11.4 Texture effect……Page 162
3.11.5 Speckle noise in multi-look images……Page 163
3.11.5.1 Statistics for multi-look image……Page 164
3.11.5.2 Estimating the number of looks in an image……Page 165
3.11.6 Speckle reduction filters……Page 166
3.11.6.1 Use of speckle reduction filters……Page 168
3.12 The impulse response (IR)……Page 170
3.12.1 Range impulse response (RIR)……Page 171
3.12.2 Azimuth impulse response (AIR)……Page 172
3.12.3 Complex image spectrum, ISLR, PSLR, weighting effect……Page 173
3.13.2 Estimating the ambiguity level……Page 174
3.13.3 Radiometric resolution……Page 176
3.14.1 Spatial resolution and pixel size……Page 177
3.14.2 Geometric distortion……Page 178
3.14.3.1 Imprecision in range……Page 179
3.15.1 Description of data……Page 181
3.15.2 Assessment of the Doppler spectrum……Page 184
3.15.4 Saturation effects……Page 185
3.15.5 Directional effects……Page 186
References……Page 187
4.1.1 A specific use for radar……Page 189
4.1.3 Interferometry and the physical properties of radar images……Page 190
4.1.4 Phase difference between radar images……Page 191
4.1.6 Limitations due to geometric and surface changes……Page 192
4.2 Implementing interferometry processing……Page 195
4.2.2 Calculating phase differences between images……Page 197
4.2.2.1 Eliminating geometric effects using only radar images……Page 198
4.2.3 Finishing tasks……Page 200
4.3.1 Set of equations and error budget……Page 201
4.3.2 Eliminating measurement ambiguity……Page 203
4.4.1 Set of equations and error budget……Page 204
4.4.2 Examples of use……Page 205
4.5 How slope effects limit interferometry……Page 209
4.5.1 Frequency interpretation of the slope effect……Page 212
4.6.2 Methods for improving interpretation……Page 213
4.6.3 Interferometry interpretation in practice……Page 216
4.7.1 Availability of archived radar data……Page 222
4.7.2 Availability of processing resources……Page 223
4.7.4 Possibilities for future dedicated space missions……Page 224
The SRTM mission……Page 226
Solutions with two satellites and the interferometric cartwheel……Page 227
4.8.1 Comparison with optical stereoscopy for topographic measurement……Page 232
4.8.2 Comparison with GPS for measuring displacement……Page 233
4.9 Robustness of coherent processing when faced with ambiguities……Page 235
4.10 Permanent reflectors……Page 237
References……Page 238
5.1 Introduction……Page 241
5.2 Radar polarimetry: operating principle……Page 242
5.2.1 Timing analysis – impact on system design……Page 243
5.3 The scattering matrix……Page 244
5.3.2 Target vector……Page 245
5.4.1 Odd-bounce (single, triple) scattering……Page 246
5.4.2 Even-bounce (double) scattering……Page 248
5.4.3 Diffraction or dipole mechanisms……Page 249
5.5 Polarization synthesis……Page 250
5.5.1 Polarimetric signatures……Page 251
5.6 Characteristic polarization and Euler parameters……Page 252
5.7.1 Decomposition into standard mechanisms – the group of Pauli matrices……Page 253
5.7.1.1 Krogager’s approach……Page 254
5.7.2 Algebraic decomposition: the Cameron approach……Page 255
5.7.2.1 Projection onto standard symmetry mechanisms……Page 257
5.8.1 Stokes formalism and Mueller matrix……Page 259
5.8.1.2 Parametric form of Huynen……Page 260
5.8.1.4 Polarimetric contrast enhancement……Page 261
5.9 Covariance matrix – coherence matrix……Page 262
5.9.1 Covariance matrix……Page 263
5.9.1.1 Behavior of the degree of coherence between co-polarized signals……Page 264
5.9.2 Coherence matrix……Page 265
5.10.1 Decomposition into polarization states: the Huynen approach……Page 266
5.10.2 Decomposition into standard mechanisms – the Freeman approach……Page 267
5.10.3.1 Diagonalization of the coherence matrice……Page 269
5.10.3.2 Entropy……Page 271
5.10.3.3 Dominant/average backscattering mechanism……Page 272
5.10.3.5 (H,α) decomposition……Page 273
5.11.1 Radiometric analysis……Page 274
5.11.2 Entropy analysis……Page 276
5.12 Synoptic representation of polarimetric information……Page 277
5.13 Future compact polarimetric systems……Page 278
5.13.1 Another idea: compact polarimetry and the pi/4 mode……Page 280
5.14 Merging polarimetry and interferometry: PolInSAR……Page 281
5.14.1 Interferometric coherence optimization……Page 282
5.14.2 Application to the inversion of vegetation height……Page 283
5.14.3 PolInSAR extensions……Page 284
References……Page 285
Reviews
There are no reviews yet.