Bharat Bhushan0849384028, 9780849384028
Table of contents :
Handbook of Micro/Nanotribology…….Page 3
Contents……Page 12
Foreword……Page 5
Second Edition……Page 6
First Edition……Page 8
Editor……Page 10
Contributors……Page 11
1.1 History of Tribology and Its Significance to Industry……Page 16
Contents……Page 1
1.2 Origins and Significance of Micro/Nanotribology……Page 18
1.3 Measurement Techniques……Page 20
1.3.1 Scanning Tunneling Microscope……Page 21
1.3.1.2 Commercial STMs……Page 23
1.3.1.3 Tip Construction……Page 26
1.3.2 Atomic Force Microscope……Page 28
1.3.2.2 McClelland etal.’s Design……Page 32
1.3.2.3 Kaneko etal.’s Design……Page 34
1.3.2.5 Commercial AFMs……Page 35
1.3.2.5.1 Multimode Capabilities……Page 42
1.3.2.5.3 Stand-Alone AFM……Page 43
1.3.2.6 Tip Construction……Page 45
1.3.3.1 Mate etal.’s Design……Page 49
1.3.3.2 Kaneko etal.’s Design……Page 50
1.3.3.3 Meyer and Amer’s and Fujisawa etal.’s Designs……Page 52
1.3.3.4 Marti etal.’s Design……Page 53
1.3.3.5 Commercial FFMs……Page 54
1.3.3.5.1 Friction Measurement Methods……Page 56
1.3.3.5.2 Normal Force and Friction Force Calibrations……Page 61
1.3.3.5.3 Typical Friction Data……Page 63
1.3.4 Surface Force Apparatus……Page 66
1.3.4.1.1 Classical SFA……Page 67
1.3.4.1.2 Sliding Attachments for Tribological Studies……Page 70
1.3.4.2 Georges etal.’s Design……Page 74
1.4.1 Magnetic Storage Devices……Page 75
1.4.2 MEMS……Page 80
1.5 Role of Micro/Nanotribology in Magnetic Storage Devices, MEMS, and Other Microcomponents……Page 82
References……Page 83
Introduction……Page 95
2.1 Force Detection……Page 96
2.2.1. Compliance and Resonances of Lumped Mass Systems……Page 97
2.2.2 Cantilevers……Page 98
2.2.3 Tips and Cantilevers……Page 103
2.2.4 Materials and Geometry……Page 104
2.2.5 Outline of Fabrication……Page 105
2.3.1 Interferometer……Page 107
2.3.1.1 Homodyne Interferometer……Page 108
2.3.1.2 Heterodyne Interferometer……Page 109
2.3.1.3 Fiber-Optic Interferometer……Page 110
2.3.1.4 Nomarski Interferometer……Page 111
2.4 Optical Lever……Page 112
2.4.1 Implementations……Page 113
2.4.2 Sensitivity……Page 115
2.5.2 Sensitivity……Page 116
2.6 Capacitive Detection……Page 117
2.6.1 Sensitivity……Page 120
2.7 Combinations for Three-Dimensional Force Measurements……Page 121
2.8.2 Piezoeffect……Page 122
2.8.4 Nonlinearities, Creep……Page 123
2.8.5.1 Passive Linearization: Calculation……Page 124
2.8.5.3 Active Linearization……Page 125
2.8.7.1 Basics……Page 126
2.8.7.3.1 Friction Force Curves on a Line……Page 127
2.9.1 Special Design Considerations……Page 128
2.9.2 Classical Setup……Page 129
2.9.3 Stand-Alone Setup……Page 131
2.9.4 Data Acquisition……Page 133
2.9.4.1 Sampling Theorem Applied to AFM……Page 135
2.9.5 Typical Setups……Page 136
2.9.6 Data Representation……Page 137
2.9.7 The Two-Dimensional Histogram Method……Page 143
2.9.8 Some Common Image-Processing Methods……Page 145
Acknowledgments……Page 151
References……Page 154
3.1Introduction……Page 160
3.2Geometry of Surfaces……Page 161
3.3.1 Surface Theory……Page 165
3.3.2 Friction Fundamentals……Page 167
3.4 Experimental Determinations of Surface Structure……Page 173
3.4.1 Low-Energy Electron Diffraction……Page 174
3.4.2 High-Resolution Electron Microscopy……Page 176
3.4.3 Field Ion Microscopy……Page 177
3.5 Chemical Analysis of Surfaces……Page 178
3.5.1 Auger Electron Spectroscopy……Page 179
3.5.2 X-Ray Photoelectron Spectroscopy……Page 181
3.5.3 Secondary Ion Mass Spectroscopy……Page 182
3.5.4 Infrared Spectroscopy……Page 183
3.5.5 Thermal Desorption……Page 185
3.6Surface Effects in Tribology……Page 187
3.6.1 Monolayer Effects in Adhesion and Friction……Page 188
3.6.2 Atomic Effects Due to Adsorption of Hydrocarbons……Page 190
3.6.3 Atomic Effects in Metal–Insulator Contacts……Page 194
3.7 Concluding Remarks……Page 196
References……Page 197
Abstract……Page 203
4.1 Introduction……Page 204
4.2.1 How Rough Is Rough?……Page 205
4.2.2 How Does Surface Roughness Influence Tribology?……Page 206
4.3.1 Probability Height Distribution……Page 208
4.3.2 RMS Values and Scale Dependence……Page 211
4.3.3.1 A Primer for Fractals……Page 214
4.3.3.2.1 Power Spectrum……Page 216
4.3.3.2.2 Structure Function……Page 218
4.3.3.3.1 Stylus Profilometry……Page 219
4.3.3.3.2 Atomic Force Microscopy……Page 221
4.3.3.4 What Do D and G Really Mean?……Page 226
4.3.3.5 rms Values and D and G……Page 227
4.3.3.6 Asperity Geometry from Fractal Characteristics……Page 229
4.3.4 Generalized Technique for Fractal and Nonfractal Surfaces……Page 230
4.4.1 Observations of Size Distribution for Fractal Surfaces……Page 233
4.4.2.1 Size Distribution under Elastic Deformation……Page 234
4.4.2.1.2 Fractal Surface……Page 235
4.4.2.2 Size Distribution under Plastic Deformation……Page 236
4.5 Contact Mechanics of Rough Surfaces……Page 237
4.5.1.1The Model……Page 238
4.5.2 Majumdar–Bhushan Model……Page 240
4.5.3 Generalized Model for Fractal and Nonfractal Surfaces……Page 245
4.5.4 Cantor Set Contact Models……Page 251
4.6 Summary and Future Directions……Page 253
References……Page 255
Appendix 4.1 — RMS Values for Multifractal Surfaces……Page 258
Appendix 4.2 — Autocorrelation Function and Fractal Parameters……Page 259
Appendix 4.3……Page 260
5.1.1 Goals and Motivations……Page 263
5.2.1 The Instrument Family……Page 264
5.2.2 What Are You Measuring?……Page 265
5.2.2.1 Cantilever Instabilities and Mechanical Hysteresis……Page 266
5.2.2.2 Measured and Processed Force Curve Data……Page 268
5.2.2.3 Where’s the Beef?……Page 269
5.3.2.1 Charges and Image Charges……Page 270
5.3.2.4 Applied Electrostatic Fields……Page 271
5.3.2.5 Innate Electrostatic Fields……Page 272
5.3.3.1 The Dispersion Force……Page 273
5.3.4 Electromagnetic Forces……Page 274
5.3.5.2 The Capillary Force……Page 275
5.3.6 Overview……Page 276
5.4 Adhesive Forces……Page 277
5.4.2.1 Notation……Page 278
5.4.2.4 BCP Mechanics……Page 280
5.4.2.6 Maugis Mechanics……Page 281
5.4.2.7 Comparison of the Five Theories……Page 282
5.4.3 Adhesion in Nanometer-Sized Contacts……Page 283
5.4.3.2 Molecular Dynamics Simulations……Page 284
5.5.1 Interpreting Your Data……Page 286
References……Page 287
6.1 Introduction……Page 289
6.2.1 The Force-Sensing System……Page 292
6.2.1.1 The Cantilever— The Force Transducer……Page 293
6.2.1.2 Measuring Forces……Page 295
6.2.2 The Tip……Page 297
6.3 Experiments……Page 298
6.3.1.1 First Experiments……Page 299
6.3.1.2 Two-Dimensional Stick-Slip……Page 306
6.3.1.3 SFFM in Ultrahigh Vacuum……Page 311
6.3.1.4 Atomic Resolution in SFM and SFFM……Page 315
6.3.2 Thin Films and Boundary Lubrication……Page 317
6.3.2.1 Adsorbed Liquid Films……Page 318
6.3.2.2 Boundary Lubrication……Page 319
6.3.3 Nanocontacts……Page 323
6.3.4 Quartz Microbalance Experiments in Tribology………Page 327
6.4 Modeling of an SFFM……Page 329
6.4.1 Resolution in SFFM……Page 330
6.4.2 Deformation of Tip and Sample……Page 332
6.4.3.1 Modeling Energy Dissipation……Page 334
6.4.3.2 SFM and Normal Forces……Page 335
6.4.3.3 SFFM and Lateral Forces……Page 337
6.4.3.4 Two-Dimensional Stick-Slip……Page 338
6.4.3.5 Energy Dissipation and Friction……Page 341
6.5 Summary……Page 342
References……Page 344
7.1 Introduction……Page 351
7.2.2 Nano/Picoindenter……Page 352
7.3 Microscratching/Microwear Studies……Page 353
7.5 Nano/Picoindentation……Page 357
7.6 Closure……Page 363
References……Page 369
8.2 Nanodeformation, Adhesive Forces, and Molecular Conformation……Page 373
8.3.1 Liquid Lubricants……Page 377
8.3.2 LB and Self-Assembled Monolayers……Page 380
8.4 Closure……Page 381
References……Page 385
Surface Forces and Microrheology of Molecularly Thin Liquid Films……Page 388
9.1 Introduction……Page 389
9.2.1 Adhesion Forces……Page 391
9.2.2 Force Law……Page 392
9.2.3 The Surface Force Apparatus and the Atomic Force Microscope……Page 393
9.3.1 van der Waals Forces……Page 394
9.3.2 Electrostatic Forces……Page 396
9.4 Solvation and Structural Forces: Forces Due to Liquid and Surface Structure……Page 397
9.4.1 Effects of Surface Structure……Page 400
9.5 Thermal Fluctuation Forces: Forces between Soft, Fluidlike Surfaces……Page 401
9.6.1 Repulsive Hydration Forces……Page 402
9.6.2 Attractive Hydrophobic Forces……Page 404
9.6.3 Origin of Hydration Forces……Page 406
9.7 Adhesion and Capillary Forces……Page 407
9.7.1 Adhesion Mechanics……Page 408
9.8 Nonequilibrium Interactions: Adhesion Hysteresis……Page 409
9.9.1 Different Modes of Friction: Limits of Continuum Models……Page 411
9.9.2 Viscous Forces and Friction of Thick Films: Continuum Regime……Page 412
9.9.3 Friction of Intermediate Thickness Films……Page 415
9.10.1General Interfacial Friction……Page 417
9.10.3Boundary Lubrication of Molecularly Thin Liquid Films……Page 418
9.10.4Transition from Interfacial to Normal Friction (with Wear)……Page 420
9.11.2Adhesion Force Contribution to Interfacial Friction……Page 421
9.11.4External Load Contribution to Interfacial Friction……Page 424
9.11.5Simple Molecular Model of Energy Dissipation e……Page 427
9.12Friction and Lubrication of Thin Liquid Films……Page 428
9.12.1Smooth and Stick-Slip Sliding……Page 429
9.12.2Role of Molecular Shape and Liquid Structure……Page 431
9.13Stick-Slip Friction……Page 433
9.13.2Distance-Dependent Model……Page 435
9.13.3Velocity-Dependent Friction Model……Page 436
9.13.3Phase Transitions Model……Page 438
9.13.4Critical Velocity for Stick-Slip……Page 440
References……Page 442
Nanomechanical Properties of Solid Surfaces and Thin Films……Page 451
10.1 Introduction……Page 452
10.2.1 Commercial Nanoindentation Hardness Apparatuses with Imaging of Indents after Unloading……Page 454
10.2.2.1 IBM T.J. Watson Research Center Microhardness Tester Design……Page 456
10.2.2.2 AERE Harwell/Micro Materials Design……Page 457
10.2.2.3 Philips Research Laboratory Design……Page 458
10.2.2.5 NEC, Kawasaki Design……Page 459
10.2.2.6 Ecole Central of Lyon Design……Page 461
10.2.2.8 IBM Almaden Research Center Design……Page 462
10.2.3.1 General Description and Principle of Operation……Page 465
10.2.3.3 The Berkovich Indenter……Page 468
10.2.3.4 Indentation Procedure……Page 469
10.2.3.5 Acoustic Emission Measurements during Indentation……Page 474
10.2.3.6 Nanoscratch and Tangential Force Measurements……Page 475
10.3 Analysis of Indentation Data……Page 477
10.3.1 Hardness……Page 480
10.3.2 Modulus of Elasticity……Page 482
10.3.3 Determination of Load Frame Compliance and Indenter Area Function……Page 484
10.3.4 Hardness/Modulus Parameter……Page 487
10.3.5 Continuous Stiffness Measurement……Page 488
10.3.6 Modulus of Elasticity by Cantilever Deflection Measurement……Page 490
10.3.7 Determination of Hardness and Modulus of Elasticity of Thin Films from the Composite Response of Film and Substrate……Page 491
10.4.1 Load Û Displacement Curves……Page 493
10.4.3 Hardness and Elastic Modulus Measurements……Page 504
10.5 Microscratch Resistance Measurement of Bulk Materials Using Micro/ Nanoscratch Technique……Page 509
10.6 Nanoindentation and Microscratch Techniques for Adhesion Measurements, Residual Stresses, and Materials Characterization of Thin Films……Page 511
10.6.1 Adhesion Strength and Durability Measurements Using Nanoindentation……Page 513
10.6.2 Adhesion Strength and Durability Measurements Using Microscratch Technique……Page 514
10.6.3 Residual Stress Measurements Using Nanoindentation……Page 517
10.7.1 Time-Dependent Viscoelastic/Plastic Properties……Page 523
10.7.2 Nanofracture Toughness……Page 526
10.7.3 Nanofatigue……Page 531
References……Page 533
11.1Introduction……Page 544
11.2Molecular Dynamics Simulations……Page 546
11.2.1 Interatomic Potentials……Page 547
11.2.2 Thermodynamic Ensemble……Page 551
11.2.3 Temperature Regulation……Page 552
11.3 Nanometer-Scale Material Properties: Indentation, Cutting, and Adhesion……Page 554
11.3.1 Indentations of Metals……Page 556
11.3.2 Indentation of Metals Covered by Thin Films……Page 560
11.3.3 Indentation of Nonmetals……Page 562
11.3.4 Cutting of Metals……Page 568
11.3.5 Adhesion……Page 569
11.4 Lubrication at the Nanometer Scale: Behavior of Thin Films……Page 573
11.4.1 Equilibrium Properties of Confined Thin Films……Page 574
11.4.2 Behavior of Thin Films under Shear……Page 578
11.5.1 Solid Lubrication……Page 589
11.5.2 Friction in the Presence of a Third Body……Page 598
11.5.3 Tribochemistry……Page 601
11.6 Summary……Page 605
References……Page 606
12.1 Introduction……Page 616
12.2.1 Heads……Page 619
12.2.1.1 Structure and Fabrication Process of Thin-Film Inductive Heads……Page 621
12.1.1.2 Head Slider Manufacturing Process……Page 622
12.2.1.3 Domain Structure in a Thin-Film Head……Page 623
12.2.1.5 Thin-Film Silicon Head……Page 625
12.2.2 Construction of the Magnetoresistive Head……Page 628
12.2.2.1 MR Sensor Structure……Page 629
12.2.2.2.3 Self-Bias……Page 631
12.1.2.3 Barkhausen Noise……Page 632
12.1.2.4.1 SAL Head……Page 633
12.2.2.4.2 Dual-Stripe Head……Page 635
12.2.2.5 Thermal Asperity……Page 636
12.2.2 The Disk……Page 637
12.2.2.1 Construction of Thin-Film Disks……Page 639
12.2.2.2.1 Texturing……Page 642
12.2.2.2.5 Certification……Page 643
12.2.3.1 Friction and Durability of Hard Disk Medium in CSS……Page 645
12.2.3.2 Stiction……Page 647
12.2.3.3 Flyability……Page 648
12.3 Tape Systems……Page 649
12.3.1.1 Design of Multitrack Head……Page 650
12.3.1.1.3 Cross Feed and Cross Talk: Interferences from Another Channel or Head……Page 653
12.3.1.2.2 Machining Process……Page 654
12.3.2 Magnetic Tapes……Page 658
12.3.2.1.3 Materials Used for Tapes……Page 660
12.3.2.1.4 Double-Coating Tape……Page 666
12.3.2.2.2 Manufacturing Process and Recording Characteristics……Page 667
12.3.2.3 Trends……Page 668
12.3.3.1 Tribological Problems between Tapes and Rotary Heads……Page 669
12.3.3.1.3 Wear of Rotary Heads……Page 673
12.3.3.2.2 Damage of Tape Edge……Page 674
12.3.3.3 Tribological Problems in Linear Recording System……Page 675
12.4.1.1 Head Design of 3.5-in. Floppy Disk Head……Page 676
12.4.1.1.2 Slider Design……Page 677
12.4.1.2.2 Machining Process……Page 678
12.4.1.2.3 Assembling Process……Page 679
12.4.3 High-Storage-Capacity Floppy Disks……Page 680
12.4.4 Head–Floppy Disk Interface……Page 681
12.4.4.2 Flyability……Page 683
References……Page 686
ABSTRACT……Page 693
13.1.1 Origins……Page 694
13.2.3 Polycrystalline Silicon Properties……Page 696
13.2.4 Tribology in MEMS……Page 697
13.3 MEMS Structures and Systems……Page 698
13.3.1.2 Vertical vs. Lateral Oscillation……Page 699
13.3.2 MEMS for Microphotonics……Page 701
13.4 Berkeley Microphotonics Research……Page 707
Acknowledgments……Page 708
References……Page 709
14.1 Introduction……Page 712
14.2.1 Experimental Apparatus and Measurement Techniques……Page 713
14.3 Surface Roughness……Page 716
14.4.2 Microscale Friction and Adhesion……Page 721
14.4.2.1 Head Slider Materials……Page 723
14.4.2.2 Magnetic Media……Page 724
14.5.1 Nanoscale Wear……Page 736
14.5.2.1 Head Slider Materials……Page 737
14.5.2.2 Magnetic Media……Page 738
14.5.3.1 Head Slider Materials……Page 740
14.5.3.2 Magnetic Media……Page 744
14.5.3.3 Silicon……Page 745
14.6.1 Picoscale Indentation……Page 747
14.6.2 Nanoscale Indentation……Page 749
14.8 Lubrication……Page 752
14.8.2 Measurement of Localized Lubricant Film Thickness……Page 757
14.9 Closure……Page 762
References……Page 775
15.1 Introduction……Page 786
15.2.1 System Energy and Interatomic Binding……Page 787
15.2.2 Lattice Structures and Structural Defects……Page 789
15.3.1 Isotropic Elasticity……Page 790
15.3.2 Anisotropic Elasticity……Page 791
15.4 Internal Stresses……Page 793
15.4.1 Thermal Film Stress……Page 794
15.4.3 Substrate and Interface Stresses……Page 795
15.5.1 Elastic–Ductile Response……Page 796
15.5.2 Time-Dependent Effects……Page 798
15.6.1 Fracture Limit and Fracture Toughness……Page 800
15.6.2 Some Fracture Data……Page 802
15.6.4 Weibull Statistics……Page 803
15.6.5 Fatigue……Page 805
15.7.1 Adhesion……Page 806
15.7.2 Influence of Coatings……Page 807
15.8.2 Elasticity Testing by Static Techniques……Page 808
15.8.3 Elasticity Testing by Dynamic Techniques……Page 809
15.8.4 Testing of Other Properties……Page 810
15.9.1 Single-Layer Beam……Page 812
15.9.2 Two-Layer Beam……Page 813
15.10Summary and Conclusions……Page 814
References……Page 815
16.1.1 Background……Page 821
16.1.2 Tribological Issues……Page 823
16.2.1.1 Micro/Nanoscale Tests……Page 828
16.2.1.2 Macroscale Tests……Page 830
16.3 Results and Discussion……Page 831
16.3.1 Micro/nanotribological Studies of Virgin, Coated, and Treated Silicon Samples……Page 832
16.3.2.1 Surface Roughness and Friction……Page 834
16.3.2.2 Scratch/Wear Tests……Page 835
16.3.3 Macroscale Tribological Studies of Virgin, Coated, and Treated Samples……Page 838
16.3.5 Component Level Studies……Page 841
16.4 Closure……Page 843
References……Page 852
Reviews
There are no reviews yet.