Pivoting and extensions: in honor of A. W. Tucker

Free Download

Authors:

Series: Mathematical programming study 1

ISBN: 9780444107275, 0444107274

Size: 1 MB (1440705 bytes)

Pages: 213/213

File format:

Language:

Publishing Year:

Category:

Balinski M.L. (ed.)9780444107275, 0444107274

Adler, I. Lower bounds for maximum diameters of polytopes.–Adler, I. and Dantzig, G. B. Maximum diameter of abstract polytopes.–Adler, I., Dantzig, G. B., and Murty, K. G. Existence of A-avoiding paths in abstract polytopes.–Balinski, M. L. On two special classes of transportation polytopes.–Cottle, R. W. Solution rays for a class of complementarity problems.–Duffin, R. J. Fourier’s analysis of linear inequality systems.–Eaves, B. C. Solving piecewise linear convex equations.–Fulkerson, D. R., Hoffman, A. J., and Oppenheim, R. On balanced matrices.–Griesmer, J. H. Derivation of a bound for error-correcting codes using pivoting techniques.–Kuhn, H. W. A new proof of the fundamental theorem of algebra.–Maurer, S. Pivotal theory of determinants.–Shapley, L. S. A note of the Lemke-Howson method.–Wolfe, P. Algorithm for a least-distance programming problem

Reviews

There are no reviews yet.

Be the first to review “Pivoting and extensions: in honor of A. W. Tucker”
Shopping Cart
Scroll to Top