A.D. Ioffe and V.M. Tihomirov (Eds.)0444851674, 9780444851673
Table of contents :
Content:
Edited by
Page iii
Copyright Page
Page iv
Preface
Pages v-vii
Basic Notation
Pages viii-x
0. Introduction Background Material
Pages 1-64
Chapter 1 Necessary Conditions for an Extremum
Pages 65-92
Chapter 2 Necessary Conditions for an Extremum in the Classical Problems of the Cal Culus of Variations and Optimal Control
Pages 93-160
Chapter 3 Elements of Convex Analysis
Pages 161-190
Chapter 4 Local Convex Analysis
Pages 191-223
Chapter 5 Locally Convex Problems and the Maximum Principle for Problems with Phase Constraints
Pages 224-254
Chapter 6 Special Problem
Pages 255-283
Chapter 7 Sufficient Conditions for an Extremum
Pages 284-320
Chapter 8 Measurable Multimappings and Convex Analysis of Integral Functionals
Pages 321-353
Chapter 9 Existence of Solutions in Problems of the Calculus of Variations and optimal Control
Pages 354-403
Chapter 10 Application of the Theory to Specific Problems
Pages 404-422
Problems
Pages 423-442
Bibliography
Pages 443-456
Subject Index
Pages 457-460
Reviews
There are no reviews yet.