Combustion

Free Download

Authors:

Edition: 4

ISBN: 9780120885732, 0120885735

Size: 4 MB (4442604 bytes)

Pages: 794/794

File format:

Language:

Publishing Year:

Category:

Irvin Glassman, Richard Yetter9780120885732, 0120885735

Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all interrelated and discussed by considering scaling issues (e.g., length and time scales). *New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms *Expanded coverage of turbulent reactive flows to better illustrate real-world applications *Important new sections on stabilization of diffusion flames. For the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

Table of contents :
Front Cover……Page 1
Combustion……Page 4
Copyright Page……Page 5
Contents……Page 10
Prologue……Page 18
Preface……Page 20
B. Heats of reaction and formation……Page 22
C. Free energy and the equilibrium constants……Page 29
1. Analysis……Page 37
2. Practical considerations……Page 43
1. Comparisons……Page 53
2. Stagnation pressure considerations……Page 54
Problems……Page 57
B. Rates of reactions and their temperature dependence……Page 64
1. The Arrhenius rate expression……Page 66
2. Transition state and recombination rate theories……Page 68
C. Simultaneous interdependent reactions……Page 73
D. Chain reactions……Page 74
E. Pseudo-first-order reactions and the “fall-off” range……Page 78
F. The partial equilibrium assumption……Page 81
G. Pressure effect in fractional conversion……Page 82
H. Chemical kinetics of large reaction mechanisms……Page 83
1. Sensitivity analysis……Page 84
2. Rate of production analysis……Page 86
3. Coupled thermal and chemical reacting systems……Page 87
4. Mechanism simplification……Page 89
Problems……Page 90
B. Chain branching reactions and criteria for explosion……Page 96
C. Explosion limits and oxidation characteristics of hydrogen……Page 104
D. Explosion limits and oxidation characteristics of carbon monoxide……Page 112
E. Explosion limits and oxidation characteristics of hydrocarbons……Page 119
1. Organic nomenclature……Page 120
2. Explosion limits……Page 124
3. “Low-temperature” hydrocarbon oxidation mechanisms……Page 127
F. The oxidation of aldehydes……Page 131
1. Low-temperature mechanism……Page 133
2. High-temperature mechanism……Page 134
1. Aliphatic hydrocarbons……Page 138
2. Alcohols……Page 148
3. Aromatic hydrocarbons……Page 150
4. Supercritical effects……Page 160
Problems……Page 162
A. Introduction……Page 168
B. Laminar flame structure……Page 172
C. The laminar flame speed……Page 174
1. The theory of Mallard and Le Chatelier……Page 177
2. The theory of Zeldovich, Frank-Kamenetskii, and Semenov……Page 182
3. Comprehensive theory and laminar flame structure analysis……Page 189
5. Flame speed measurements……Page 197
6. Experimental results: physical and chemical effects……Page 206
D. Stability limits of laminar flames……Page 212
1. Flammability limits……Page 213
2. Quenching distance……Page 221
3. Flame stabilization (low velocity)……Page 222
4. Stability limits and design……Page 228
E. Flame propagation through stratified combustible mixtures……Page 232
F. Turbulent reacting flows and turbulent flames……Page 234
1. The rate of reaction in a turbulent field……Page 237
2. Regimes of turbulent reacting flows……Page 239
3. The turbulent flame speed……Page 252
G. Stirred reactor theory……Page 256
H. Flame stabilization in high-velocity streams……Page 261
I. Combustion in small volumes……Page 271
Problems……Page 275
2. Explosion, deflagration, and detonation……Page 282
3. The onset of detonation……Page 283
B. Detonation phenomena……Page 285
C. Hugoniot relations and the hydrodynamic theory of detonations……Page 286
1. Characterization of the Hugoniot curve and the uniqueness of the C–J point……Page 287
2. Determination of the speed of sound in the burned gases for conditions above the C–J point……Page 297
3. Calculation of the detonation velocity……Page 303
D. Comparison of detonation velocity calculations with experimental results……Page 307
E. The ZND structure of detonation waves……Page 314
1. The cellular detonation front……Page 318
2. The dynamic detonation parameters……Page 322
3. Detonation limits……Page 323
G. Detonations in nongaseous media……Page 327
Problems……Page 328
B. Gaseous fuel jets……Page 332
1. Appearance……Page 333
2. Structure……Page 337
3. Theoretical considerations……Page 339
4. The Burke–Schumann development……Page 343
5. Turbulent fuel jets……Page 350
C. Burning of condensed phases……Page 352
1. General mass burning considerations and the evaporation coefficient……Page 353
2. Single fuel droplets in quiescent atmospheres……Page 358
D. Burning of droplet clouds……Page 385
1. The stagnant film case……Page 386
2. The longitudinally burning surface……Page 388
3. The flowing droplet case……Page 390
4. Burning rates of plastics: The small B assumption and radiation effects……Page 393
Problems……Page 395
A. Concepts……Page 400
B. Chain spontaneous ignition……Page 403
1. Semenov approach of thermal ignition……Page 405
2. Frank-Kamenetskii theory of thermal ignition……Page 410
D. Forced ignition……Page 416
1. Spark ignition and minimum ignition energy……Page 417
2. Ignition by adiabatic compression and shock waves……Page 422
E. Other ignition concepts……Page 423
1. Hypergolicity and pyrophoricity……Page 424
2. Catalytic ignition……Page 427
Problems……Page 428
A. Introduction……Page 430
B. The nature of photochemical smog……Page 431
2. The effect of NO[sub(x)]……Page 432
3. The effect of SO[sub(x)]……Page 436
C. Formation and reduction of nitrogen oxides……Page 438
1. The structure of the nitrogen oxides……Page 439
2. The effect of flame structure……Page 440
3. Reaction mechanisms of oxides of nitrogen……Page 441
4. The reduction of NO[sub(x)]……Page 457
D. SO[sub(x)] emissions……Page 462
1. The product composition and structure of sulfur compounds……Page 463
2. Oxidative mechanisms of sulfur fuels……Page 465
E. Particulate formation……Page 478
1. Characteristics of soot……Page 479
2. Soot formation processes……Page 480
3. Experimental systems and soot formation……Page 481
4. Sooting tendencies……Page 483
5. Detailed structure of sooting flames……Page 495
6. Chemical mechanisms of soot formation……Page 499
7. The influence of physical and chemical parameters on soot formation……Page 503
F. Stratospheric ozone……Page 506
1. The HO[sub(x)] catalytic cycle……Page 507
2. The NO[sub(x)] catalytic cycle……Page 508
3. The ClO[sub(x)] catalytic cycle……Page 510
Problems……Page 512
A. Carbon char, soot, and metal combustion……Page 516
2. Thermodynamics of metal–oxygen systems……Page 517
3. Thermodynamics of metal–air systems……Page 530
4. Combustion synthesis……Page 534
C. Diffusional kinetics……Page 541
D. Diffusion-controlled burning rate……Page 543
1. Burning of metals in nearly pure oxygen……Page 545
2. Burning of small particles – diffusion versus kinetic limits……Page 548
3. The burning of boron particles……Page 551
4. Carbon particle combustion (C. R. Shaddix)……Page 552
1. Devolatilization……Page 555
2. Char combustion……Page 560
3. Pulverized coal char oxidation……Page 561
4. Gasification and oxy-combustion……Page 563
F. Soot oxidation (C. R. Shaddix)……Page 566
Problems……Page 569
APPENDIXES……Page 572
APPENDIX A. THERMOCHEMICAL DATA AND CONVERSION FACTORS……Page 576
Table A1. Conversion factors and physical constants……Page 577
Table A2. Thermochemical data for selected chemical compounds……Page 578
Table A3. Thermochemical data for species included in reaction list of Appendix C……Page 667
Table B1. Adiabatic flame temperatures……Page 674
Table C1. H[sub(2)]/O[sub(2)] mechanism……Page 680
Table C2. CO/H[sub(2)]/O[sub(2)] mechanism……Page 682
Table C3. CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism……Page 683
Table C4. CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism……Page 684
Table C5. CH[sub(4)]/CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism……Page 686
Table C6. C[sub(2)]H[sub(6)]/CH[sub(4)]/CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism……Page 689
Table C7. Selected reactions of a C[sub(3)]H[sub(8)] oxidation mechanism……Page 694
Table C8. N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism……Page 698
Table C9. HCl/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism……Page 704
Table C10. O[sub(3)]/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism……Page 705
Table C11. SO[sub(x)]/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism……Page 706
APPENDIX D. BOND DISSOCIATION ENERGIES OF HYDROCARBONS……Page 714
Table D1. Bond dissociation energies of alkanes……Page 715
Table D2. Bond dissociation energies of alkenes, alkynes, and aromatics……Page 716
Table D3. Bond dissociation energies of C/H/O compounds……Page 719
Table D4. Bond dissociation energies of sulfur-containing compounds……Page 720
Table D5. Bond dissociation energies of nitrogen-containing compounds……Page 721
Table D6. Bond dissociation energies of halocarbons……Page 723
APPENDIX E. FLAMMABILITY LIMITS IN AIR……Page 724
Table E1. Flammability limits of fuel gases and vapors in air at 25°C and 1 atm……Page 725
APPENDIX F. LAMINAR FLAME SPEEDS……Page 734
Table F1. Burning velocities of various fuels at 25°C air-fuel temperature (0.31 mol% H[sub(2)]O in air). Burning velocity S as a function of equivalence ratio ø in cm/s……Page 735
Table F2. Burning velocities of various fuels at 100°C air-fuel temperature (0.31 mol% H[sub(2)]O in air). Burning velocity S as a function of equivalence ratio ø in cm/s……Page 740
Table F3. Burning velocities of various fuels in air as a function of pressure for an equivalence ratio of 1 in cm/s……Page 741
APPENDIX G. SPONTANEOUS IGNITION TEMPERATURE DATA……Page 742
Table G1. Spontaneous ignition temperature data……Page 743
APPENDIX H. MINIMUM SPARK IGNITION ENERGIES AND QUENCHING DISTANCES……Page 764
Table H1. Minimum spark ignition energy data for fuels in air at 1 atm pressure……Page 765
B. Kinetic parameters……Page 768
D. Reaction mechanisms……Page 769
E. Thermodynamic equilibrium……Page 771
F. Temporal kinetics (Static and flow reactors)……Page 773
G. Stirred reactors……Page 774
I. Premixed flames……Page 775
M. Model analysis and mechanism reduction……Page 777
B……Page 780
D……Page 781
G……Page 782
J……Page 783
L……Page 784
N……Page 785
S……Page 786
V……Page 787
Z……Page 788
C……Page 790
F……Page 791
M……Page 792
S……Page 793
W……Page 794

Reviews

There are no reviews yet.

Be the first to review “Combustion”
Shopping Cart
Scroll to Top