Homology of Locally Semialgebraic Spaces

Free Download

Authors:

Edition: 1

Series: Lecture Notes in Mathematics 1484

ISBN: 3540546154, 9783540546153, 0387546154

Size: 946 kB (969182 bytes)

Pages: 138/147

File format:

Language:

Publishing Year:

Category: Tags: ,

Hans Delfs (auth.)3540546154, 9783540546153, 0387546154

Locally semialgebraic spaces serve as an appropriate framework for studying the topological properties of varieties and semialgebraic sets over a real closed field. This book contributes to the fundamental theory of semialgebraic topology and falls into two main parts. The first dealswith sheaves and their cohomology on spaces which locally look like a constructible subset of a real spectrum. Topics like families of support, homotopy, acyclic sheaves, base-change theorems and cohomological dimension are considered. In the second part a homology theory for locally complete locally semialgebraic spaces over a real closed field is developed, the semialgebraic analogue of classical Bore-Moore-homology. Topics include fundamental classes of manifolds and varieties, Poincare duality, extensions of the base field and a comparison with the classical theory. Applying semialgebraic Borel-Moore-homology, a semialgebraic (“topological”) approach to intersection theory on varieties over an algebraically closed field of characteristic zero is given. The book is addressed to researchers and advanced students in real algebraic geometry and related areas.

Table of contents :
Abstract locally semialgebraic spaces….Pages 1-16
Sheaf theory on locally semialgebraic spaces….Pages 17-61
Semialgebraic Borel-Moore-homology….Pages 62-114
Some intersection theory….Pages 115-129

Reviews

There are no reviews yet.

Be the first to review “Homology of Locally Semialgebraic Spaces”
Shopping Cart
Scroll to Top