Luigi Ambrosio, Yann Brenier, Giuseppe Buttazzo, Cédric Villani, Luis A. Caffarelli, Luis A. Caffarelli, Sandro Salsa354040192X, 9783540401926
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
Table of contents :
ymau60re2553uwqn.pdf……Page 0
1 Optimal Transportation……Page 9
2 The continuous case……Page 10
3 The dual problem……Page 11
4 Existence and Uniqueness……Page 12
5 The potential equation……Page 14
6 Some remarks on the structure of the equation……Page 15
1 Introduction……Page 19
2.1 The isoperimetric problem……Page 21
2.2 The Newton’s problem of optimal aerodynamical profiles……Page 22
2.3 Optimal Dirichlet regions……Page 25
2.4 Optimal mixtures of two conductors……Page 27
3 Mass optimization problems……Page 31
4 Optimal transportation problems……Page 37
4.1 The optimal mass transportation problem: Monge and Kantorovich formulations……Page 38
4.2 The PDE formulation of the mass transportation problem……Page 40
5 Relationships between optimal mass and optimal transportation……Page 41
6.1 A vectorial example……Page 43
6.2 A $p$-Laplacian approximation……Page 45
6.3 Optimization of Dirichlet regions……Page 46
6.4 Optimal transporting distances……Page 48
References……Page 52
1 Some motivations……Page 61
2 A study of fast trend to equilibrium……Page 62
3 A study of slow trend to equilibrium……Page 71
4 Estimates in a mean-field limit problem……Page 78
5 Otto’s differential point of view……Page 87
References……Page 95
2.1 Generalized geodesics……Page 97
2.2 Extension to probability measures……Page 100
2.3 A decomposition result……Page 102
2.4 Relativistic MKT……Page 103
2.5 A relativistic heat equation……Page 104
2.6 Laplace’s equation and Moser’s lemma revisited……Page 106
3.1 Classical harmonic functions……Page 108
Optimality equations……Page 111
Superharmonicity of the Boltzmann entropy……Page 113
A tentative proof……Page 114
4 Multiphasic MKT……Page 115
5 Generalized extremal surfaces……Page 117
5.2 Degenerate quadratic cost functions……Page 119
6 Generalized extremal surfaces in $mathbb{R}^5$ and Electrodynamics……Page 120
6.1 Recovery of the Maxwell equations……Page 121
6.2 Derivation of a set of nonlinear Maxwell equations……Page 122
6.3 An Euler-Maxwell-type system……Page 124
References……Page 126
1 Introduction……Page 128
2 Notation……Page 134
3 Duality and optimality conditions……Page 135
4 Gamma-convergence and Gamma-asymptotic expansions……Page 140
5 1-dimensional theory……Page 141
6 Transport rays and transport set……Page 143
7 A stability result……Page 151
8 A counterexample……Page 155
9 Appendix: disintegration of measures……Page 157
References……Page 163
Reviews
There are no reviews yet.