Hyperbolic geometry from a local viewpoint

Free Download

Authors:

Edition: 1

Series: London Mathematical Society student texts 68

ISBN: 9780521863605, 0521863600, 9780521682244

Size: 2 MB (2116629 bytes)

Pages: 280/280

File format:

Language:

Publishing Year:

Category:

Linda Keen, Nikola Lakic9780521863605, 0521863600, 9780521682244

Written for graduate students, this book presents topics in 2-dimensional hyperbolic geometry. The authors begin with rigid motions in the plane which are used as motivation for a full development of hyperbolic geometry in the unit disk. The approach is to define metrics from an infinitesimal point of view; first the density is defined and then the metric via integration. The study of hyperbolic geometry in arbitrary domains requires the concepts of surfaces and covering spaces as well as uniformization and Fuchsian groups. These ideas are developed in the context of what is used later. The authors then provide a detailed discussion of hyperbolic geometry for arbitrary plane domains. New material on hyperbolic and hyperbolic-like metrics is presented. These are generalizations of the Kobayashi and Caratheodory metrics for plane domains. The book concludes with applications to holomorphic dynamics including new results and accessible open problems.

Reviews

There are no reviews yet.

Be the first to review “Hyperbolic geometry from a local viewpoint”
Shopping Cart
Scroll to Top