Chiral Nuclear Dynamics II: From Quarks to Nuclei to Compact Stars (2008)(2nd)(en)(352s)

Free Download

Authors:

Edition: 2

ISBN: 9789812705884, 981-270-588-0

Size: 6 MB (6102635 bytes)

Pages: 373/373

File format:

Language:

Publishing Year:

Category: Tags: , ,

Mannque Rho9789812705884, 981-270-588-0

This is the sequel to the first volume, to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and bulk gravity in 5D as in AdS/QCD. Special attention is paid to hot matter relevant for relativistic heavy ion processes and to dense matter relevant for compact stars that are either stable or on the verge of collapse into black holes.

Table of contents :
Contents……Page 14
Preface……Page 8
1. Introduction……Page 22
2. Multi-Facets Of QCD In Matter……Page 30
3.1 Motivation……Page 38
3.2 Chiral Bag Picture……Page 39
3.2.1 Cheshire Cat as a gauge artifact……Page 42
3.2.2 Baryon charge and the exact Cheshire Cat phenomenon……Page 45
3.3.1 Flavor singlet axial charge……Page 49
3.3.2 “Charge-spin separation” for Cheshire Cat phenomena……Page 55
3.4 CCP andMulti-Facets of CBM……Page 56
3.4.2 Cloudy bagmodel……Page 57
3.4.4 Heavy baryon chiral perturbation approach……Page 58
4.1 Role of Effective Field Theory in Nuclear Physics……Page 60
4.2.1 The power of SNPA……Page 61
4.2.2 The power of EFT……Page 62
4.3.1 Relevant scales and degrees of freedom……Page 63
4.3.2 Vector mesons and baryons……Page 64
4.3.3 Baryon fields……Page 65
4.4 Pionless EFT (π/EFT)……Page 67
4.5.1 Weinberg’s counting rule……Page 69
4.5.2 Strategy of MEEFT……Page 71
4.5.3 The chiral filter……Page 72
4.5.4 Working of MEEFT……Page 73
4.5.4.1 What does the chiral filter say?……Page 74
4.5.4.2 Sketch of the calculational procedure……Page 76
4.5.4.3 How the cutoff enters……Page 79
4.5.4.4 Physicalmeaning of Λ……Page 80
4.5.5.1 Thermal np capture……Page 81
4.5.5.2 Polarization observables in np capture……Page 83
4.5.5.3 Deuteron form factors……Page 86
4.5.5.4 Predicting the solar neutrino processes……Page 91
4.5.5.5 Magnetic moments of the trinucleons……Page 95
4.5.5.6 Further implications of the dR term……Page 96
4.7 EFT for Heavy Nuclei and Nuclear Matter……Page 99
5. Hidden Local Symmetry For Hadrons……Page 102
5.1 Emergence of Local Flavor Symmetry……Page 103
5.2.1 Simplest open moose diagram……Page 105
5.2.2 General open moose……Page 107
5.2.3 Spectrum of the open moose……Page 108
5.2.4 Dimensional deconstruction……Page 109
5.3.1 Objectives……Page 110
5.3.2 Bottom-up approach……Page 111
5.3.3 Top-down approach……Page 114
5.3.4 Vector dominance……Page 116
5.4 HLSK=1 fromHolographicDual QCD……Page 117
5.4.1 Going from 5D to 4D……Page 118
5.4.2 Doing quantum corrections……Page 119
5.5.1 HLSK=1: Hidden local symmetry `a la Bando et al…….Page 120
5.5.2 HLSK=1 with loop corrections……Page 121
5.5.2.1 Wilsonian matching……Page 122
5.5.2.2 Vector manifestation (VM)……Page 126
5.5.2.4 Scaling near the VM fixed point……Page 128
5.6.1.1 Chiral counting for the vector mesons in χPT……Page 129
5.6.1.2 Loop calculations……Page 131
5.6.2 Weinberg sum rules……Page 132
5.6.3 Pionmass difference……Page 134
5.6.4.1 Heavy quark symmetry……Page 136
5.6.4.2 Constructing effective Lagrangians……Page 137
5.6.4.3 The fixed point Lagrangian……Page 138
5.6.4.4 Effects of spontaneous chiral symmetry breaking……Page 139
5.6.4.5 Lagrangian in parity eigenfields……Page 140
5.6.4.6 Calculation at the matching point……Page 141
5.6.4.7 Quantum correction……Page 142
5.6.4.8 Mass splitting……Page 144
5.7.1 HLSK=2 Lagrangian……Page 145
5.7.2 Fixed points……Page 147
5.7.3 Phase structures for different fixed points……Page 150
5.7.4 Multiplet structure and vector dominance……Page 151
5.7.5 Vector dominance and the fixed points……Page 152
5.7.6 Infinite tower and the VD……Page 153
6.1 Preliminary Remarks……Page 154
6.2.1 A little history in nuclear physics……Page 155
6.2.2 Little bag and skyrmion……Page 156
6.3.2 HLS Lagrangian “light” (HLSK=1)……Page 157
6.3.3 SU(2) skyrmion……Page 159
6.3.3.1 Stabilizing the soliton……Page 160
6.3.3.2 Gauged skyrmion with the ρmeson……Page 161
6.3.3.3 Defects of the Skyrme soliton……Page 163
6.3.5 SU(3) Skyrmions: S > 0 baryons……Page 167
6.3.5.1 Kaon-soliton bound skyrmions……Page 168
6.4 Dense Skyrmion Matter and Chiral Transition……Page 173
6.4.1 Single skyrmion……Page 176
6.4.2 Skyrmion crystal……Page 177
6.4.3 Fluctuations on top of the skyrmion background and Brown-Rho scaling……Page 184
6.4.4 Pseudogap phase……Page 188
6.5.1 Baryon as an instanton……Page 190
6.5.2 Chiral dynamics……Page 194
6.5.3.1 “Old” vector dominance……Page 195
6.5.3.2 “New” vector dominance……Page 197
6.5.3.4 Nucleon EM form factors……Page 199
6.6 Neutron Stars As Giant Skyrmions……Page 205
6.6.1 Skyrmion EOS……Page 206
6.6.2 Einstein-skyrmion star……Page 207
7.1.1 Vector manifestation at Tc……Page 208
7.1.2 Lorentz-invariant formulas……Page 209
7.1.2.2 Pion decay constant……Page 210
7.1.2.3 “Dropping mass”……Page 211
7.1.2.4 Width……Page 212
7.1.2.5 Corrections from Lorentz non-invariance……Page 213
7.2 HLS in DenseMatter……Page 215
7.2.1 Dense HLS Lagrangian……Page 216
7.2.2 Hadrons near µ = µc……Page 219
7.3.1 Melting of “soft” glue and chiral restoration……Page 222
7.4 Applications……Page 224
7.4.1 Pion velocity near critical temperature Tc……Page 225
7.4.1.1 Standard sigma model scenario……Page 226
7.4.1.2 HLS/VM scenario……Page 228
7.4.1.3 Measuring the pion velocity near Tc……Page 231
7.4.2 Vector and axial vector susceptibilities near critical temperature Tc……Page 232
7.4.3 Spectral function of the ρ meson……Page 234
7.4.3.1 ρππ and γππ couplings in hot medium and
violation of vector dominance……Page 235
7.4.3.2 EM form factor of the pion and the ρ spectral
function……Page 238
7.4.4 ρ0/π. ratio in peripheral collisions……Page 243
8.1 Brown-Rho Scaling……Page 246
8.1.1 Intrinsic density dependence via dilaton……Page 247
8.1.2 Scaling of baryonmasses……Page 248
8.1.3 Parity-doubled sigma model……Page 249
8.1.4 Constraints from anomaly matching?……Page 251
8.2.1 Double-decimation approach……Page 252
8.2.2 Scaling masses and Landau-Migdal parameters……Page 253
8.2.3 Thermodynamic consistency……Page 258
8.2.4 Meaning of C……Page 261
8.3 Observables in Finite Nuclei……Page 262
8.3.1 Nuclear magnetic moment……Page 263
8.3.3 Relation between the Landau mass mL and the axial
coupling constant gA……Page 266
8.3.5 Effect on tensor forces……Page 267
8.3.6 Warburton ratio……Page 270
8.3.7 “Observing” the dropping vector meson masses……Page 272
8.4 DroppingMasses and NuclearMatter……Page 274
8.4.1 Nuclear matter in chiral Fermi liquid approach……Page 275
8.4.2 Microscopic approach to Landau Fermi liquid with Brown-Rho scaling……Page 276
9. Strangeness In Dense Medium……Page 280
9.1.1 Kaon condensation as “restoration” of explicit chiral symmetry breaking……Page 281
9.1.2 Doing heavy baryon χPT……Page 283
9.1.3 Kaon condensation driven by electrons……Page 285
9.1.4.1 Ë(1405)……Page 287
9.1.4.2 Influence on kaon condensation……Page 291
9.1.4.3 “Dangerously irrelevant terms”……Page 293
9.1.5.1 Chiral perturbation approach……Page 295
9.1.6 Kaon condensation with Brown-Rho scaling……Page 296
9.2.1 Simplification at the VM…….Page 301
9.2.2 Toward kaon condensation……Page 303
9.3 Dense Kaonic Nuclei as Strange Nuggets: “KaoN”……Page 304
9.3.1 With standard potentials……Page 305
9.3.2 With non-standard potentials……Page 306
9.3.3 KaoN as an “Ice-9” nugget……Page 307
10. Dense Matter For Compact Stars……Page 310
10.1 Dense Hadronic Phase With and Without Exotica……Page 311
10.1.1 Compact stars as dense neutron matter……Page 312
10.1.2 Working of the vector manifestation……Page 313
10.1.3 Demise of the VM scenario by massive compact stars?……Page 315
10.1.4 Kaon condensation as a doorway to quark matter……Page 316
10.2 Skyrmion-Half-Skyrmion Transition……Page 319
10.2.1 Half-skyrmions and emergence of “vector symmetry”……Page 320
10.2.2 Transition from the CFL phase to the normal nuclear phase……Page 322
10.3 QCD at High Density: Color Superconductivity (CSC)……Page 324
10.3.1 Color-flavor locking (CFL)……Page 325
10.3.2 Chiral Lagrangian for CFL……Page 326
10.3.3 “Un-hidden” local symmetry……Page 328
10.3.4 Superqualitons as baryons……Page 330
10.3.5 Kaon condensation in the CFL sector……Page 332
10.4 CSC at Non-Asymptotic Density……Page 333
10.4.1 Induced CFL……Page 334
10.4.2 Landscape of non-CFL phases……Page 336
11.1 Objective……Page 338
11.3 Chiral Dynamics in the Core of Compact Stars……Page 339
11.3.2 Neutron stars with kaon condensation “light”……Page 340
11.4.1 Mmax NS `a la Brown-Bethe……Page 345
11.4.2 Cosmological constraint on Mmax NS ?……Page 346
11.5 Formation of Double Neutron Star Binaries……Page 347
11.6 Neutron Stars Heavier than Mmax NS ?……Page 348
11.6.1 Vela X-1……Page 349
11.6.2 Neutron star-white dwarf binaries……Page 350
11.6.3 Two-branch scenario……Page 351
11.7 Outlook……Page 352
Bibliography……Page 356
Index……Page 370

Reviews

There are no reviews yet.

Be the first to review “Chiral Nuclear Dynamics II: From Quarks to Nuclei to Compact Stars (2008)(2nd)(en)(352s)”
Shopping Cart
Scroll to Top