Arthur T. White (Eds.)9780444500755, 0444500758
Table of contents :
Content:
Foreword
Pages v-vii
Chapter 1 Historical setting Original Research Article
Pages 1-4
Chapter 2 A brief introduction to graph theory Original Research Article
Pages 5-12
Chapter 3 The automorphism group of a graph Original Research Article
Pages 13-17
Chapter 4 The Cayley color graph of a group presentation Original Research Article
Pages 19-32
Chapter 5 An introduction to surface topology Original Research Article
Pages 33-48
Chapter 6 Imbedding problems in graph theory Original Research Article
Pages 49-72
Chapter 7 The genus of a group Original Research Article
Pages 73-88
Chapter 8 Map-coloring problems Original Research Article
Pages 89-106
Chapter 9 Quotient graphs and quotient manifolds: Current graphs and the complete graph theorem Original Research Article
Pages 107-117
Chapter 10 Voltage graphs Original Research Article
Pages 119-141
Chapter 11 Nonorientable graph imbeddings Original Research Article
Pages 143-155
Chapter 12 Block designs Original Research Article
Pages 157-171
Chapter 13 Hypergraph imbeddings Original Research Article
Pages 173-183
Chapter 14 Finite fields on surfaces Original Research Article
Pages 185-197
Chapter 15 Finite geometries on surfaces Original Research Article
Pages 199-234
Chapter 16 Map automorphism groups Original Research Article
Pages 235-265
Chapter 17 Enumerating graph imbeddings Original Research Article
Pages 267-279
Chapter 18 Random topological graph theory Original Research Article
Pages 281-294
Chapter 19 Change ringing Original Research Article
Pages 295-321
References
Pages 323-350
References
Pages 351-352
Index of symbols
Pages 353-355
Index of definitions
Pages 357-363
Reviews
There are no reviews yet.