Lagrange multipliers and optimality

Free Download

Authors:

Size: 6 MB (6457814 bytes)

Pages: 41/41

File format:

Language:

Publishing Year:

Rockafellar R.

Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write first-order optimality conditions formally as a system of equations-Modern applications, with their emphasis on numerical methods and more complicated side conditions than equations, have demanded deeper understanding of the concept and how it fits into a larger theoretical picture.A major line of research has been the nonsmooth geometry of one-sided tangent and normal vectors to the set of points satisfying the given constraints. Another has been the game-theoretic role of multiplier vectors as solutions to a dual problem. Interpretations as generalized derivatives of the optimal value with respect to problem parameters have also been explored. Lagrange multipliers are now being seen as arising from a general rule for the subdirferentiation of a nonsmooth objective function which allows black-and-white constraints to be replaced by penalty expressions. This paper traces such themes in the current theory of Lagrange multipliers, providing along the way a free-standing exposition of basic nonsmooth analysis as motivated by and applied to this subject.

Reviews

There are no reviews yet.

Be the first to review “Lagrange multipliers and optimality”
Shopping Cart
Scroll to Top