John S. Avery9781402004094, 1402004095
This book explores the connections between the theory of hyperspherical harmonics, momentum-space quantum theory, and generalized Sturmian basis functions; and it introduces methods which may be used to solve many-particle problems directly, without the use of the self-consistent-field approximation. The method of many-electron Sturmians offers an interesting and fresh alternative to the usual SCF-CI methods for calculating atomic and molecular structure. When many-electron Sturmians are used, and when the basis potential is chosen to be the attractive potential of the nuclei in the system, the following advantages are offered: the matrix representation of the nuclear attraction potential is diagonal; the kinetic energy term vanishes from the secular equation; the Slater exponents of the atomic orbitals are automatically optimized; convergence is rapid; a correlated solution to the many-electron problem can be obtained directly, without the use of the SCF approximation; and excited states can be obtained with good accuracy. Audience: The book will be of interest to advanced students and research workers in theoretical chemistry, physics and mathematics. | |
Reviews
There are no reviews yet.