Alejandro Adem, Johann Leida, Yongbin Ruan0521870046, 9780521870047, 9780511286766
Table of contents :
Cover……Page 1
Half-title……Page 3
Series-title……Page 4
Title……Page 5
Copyright……Page 6
Contents……Page 7
Introduction……Page 9
1.1 Classical effective orbifolds……Page 15
1.2 Examples……Page 19
1.3 Comparing orbifolds to manifolds……Page 24
1.4 Groupoids……Page 29
1.5 Orbifolds as singular spaces……Page 42
2.1 De Rham and singular cohomology of orbifolds……Page 46
2.2 The orbifold fundamental group and covering spaces……Page 53
2.3 Orbifold vector bundles and principal bundles……Page 58
2.4 Orbifold morphisms……Page 61
2.5 Classification of orbifold morphisms……Page 64
3.1 Introduction……Page 70
3.2 Orbifolds, group actions, and Bredon cohomology……Page 71
3.3 Orbifold bundles and equivariant K-theory……Page 74
3.4 A decomposition for orbifold K-theory……Page 77
3.5 Projective representations, twisted group algebras, and extensions……Page 83
3.6 Twisted equivariant K-theory……Page 86
3.7 Twisted orbifold K-theory and twisted Bredon cohomology……Page 90
4 Chen–Ruan cohomology……Page 92
4.1 Twisted sectors……Page 94
4.2 Degree shifting and Poincare pairing……Page 98
4.3 Cup product……Page 102
4.4 Some elementary examples……Page 109
4.5 Chen–Ruan cohomology twisted by a discrete torsion……Page 112
5.1 Abelian orbifolds……Page 119
5.1.1 The de Rham model……Page 120
5.1.2 Examples……Page 125
5.2 Symmetric products……Page 129
5.2.1 The Heisenberg algebra action……Page 130
5.2.2 The obstruction bundle……Page 142
5.2.3 LLQW axioms……Page 145
References……Page 152
Index……Page 160
Reviews
There are no reviews yet.